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Abstract

An elephant trunk robot is continuum robot consisting of a flexible back-
bone actuated by two pairs of cables (or tendons) offset by a distance and
along the circumference of the backbone. By pulling the cables, the contin-
uum robot assumes the shape of an arc of a circle in 3D space. In literature,
forward kinematics of the robot has been developed using differential geom-
etry of 3D curves. In this paper, we show that forward kinematics can
also be obtained by discretizing along the length of the robot, with each
discrete element modeled as a four-bar mechanism, and using a minimiza-
tion approach. Each of the four-bar mechanism is assumed to be rigid with
constant link length. It is shown that minimizing the angle made by the
coupler link with the fixed link of the parallel linkage results in a profile
which is numerically same as that derived from differential geometry for a
segment of cable driven robot in 2D. The results obtained for actuation in
2D is extended to 3D, using two four-bar mechanisms actuated by the two
sets of cables, and it is shown to match the analytical formulation available
in literature. The proposed method of using a sequence of four-bar mech-
anisms opens up a new perspective in modeling the forward kinematics of
cable driven continuum robots.

Keywords: : elephant trunk robot, flexible robots, four-bar mechanism,
2D and 3D motion

1 Introduction

Continuum robots are generally serial robots which use flexible links instead of
rigid links. Since the degree of freedom of such robots are infinite, they possess
all the advantages of a hyper-redundant robot. A detailed review on the design,
history and applications of continuum robots can be found in [1] and [2]. One
of the earliest continuum robot developed was the Rice/Clemson ‘elephant-trunk’
robot shown in [3] (refer Fig. 1). The robot which resembles a spinal column
structure consists of a flexible backbone whose pose can be adjusted by pulling a
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1 INTRODUCTION

Figure 1: Elephant trunk robot [3]
Figure 2: Elephant trunk robot configu-
ration

set of cables attached to it (refer Fig. 2). The robot is made of multiple segments
and each segment can be actuated using a set of four cables which are placed 90◦

apart from each other. Guide disk attached at regular intervals on the backbone
routes the cables (tendons) from the base of the robot till the tip of the segment
so that the separation between the cables are maintained. Detailed analysis of
the workspace of the robot can be found in reference [4]. Many advanced flexible
robots are modifications of this original concept, with difference mostly in the
actuation mechanism (see [5] and [6]).

The forward kinematics of the cable driven continuum robot is to find the pose
of the robot when the lengths of cables are given. In reference [7] Gravagne and
Walker derived analytical expressions for the forward kinematics of elephant trunk
robot using concepts from differential geometry. The co-ordinates of a point on
the robot is determined using two parameters—α which is angle of rotation of the
plane that contains the final configuration of the robot and about the initial axis
of the robot1 and the angle β(s) made by the tangent of backbone with the initial
axis (which varies along the length of the deformed backbone). In this paper, we
show that the forward kinematics solutions derived in the literature can also be
obtained by solving an optimization problem. While extending the differential
geometry based analytical methods to solve the model could be non-trivial for
uneven spacing between the cables and for robots with general cable routing, the
method proposed in this paper could provide a simpler alternative for tackling
such complexities. In section 2, the forward kinematics model for single cable
actuation and the resulting configuration in 2D plane is discussed. Extension of
the method to out-of-plane bending of the actuator is shown in section 3. Finally,
conclusions are presented in section 4.

1The configuration of the robot will always be in a plane and is shown to take the shape of
an arc of a circle.
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Figure 3: Discretization of robot
in 2D plane
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Figure 4: Nomenclature for single segment

2 Forward Kinematics Model for 2D Continuum
Robot

In a cable driven continuum robot with two pairs of cables, if the two opposing
cables in one of the pairs (cables which are 180◦ apart) are actuated, the robot
will be restricted to move within a 2D plane. Among the opposing cable duo,
only one cable is pulled at a time, since otherwise, the robot can buckle. In this
section, the formulation of forward kinematics of 2D planar continuum robot is
discussed.

The proposed formulation assumes the profile of the continuum robot as a set
of connected 4 bar parallel linkages. To this end, the robot is discretized into
n number of segments along the backbone of the continuum robot as shown in
Fig. 3. In this approach, only one cable from the opposing cable pair is considered,
as it can be seen in the later part of the section that the other cable does not have
any role in manipulation of the robot in the quadrants containing the actuated
cable2. With reference to Fig. 4, one segment of the continuum robot can be
approximated as a 4-bar linkage, with the first crank, coupler, second crank and
fixed link having lengths l0, l1, l2 and l3 respectively. Since the cables pass
through holes present in the guide disks, the lengths l1 = l3 = a where a is the
constant spacing between the backbone and the cables. For the robot of length

L0 measured along the backbone, the length of the first crank l0 =
L0

n
. When

the cables are actuated to a final length of La = L0 − ∆La where ∆La is the

prescribed change in length of the cable, the length of second crank, l2 = l =
La

n
.

From the loop-closure constraint equations of the 4-bar linkage located at the base
of continuum robot, we get

f(θ, β) = l20 + 2a2 − l2 + 2al0 sin (θ − β)− 2a (l0 sin θ + a cosβ) = 0 (1)

2The opposing cable is used to retract the robot to its original position if the backbone
material is not perfectly elastic, and for manipulation in the opposing direction of the first
cable.
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Figure 6: Assembly of 4 bar linkages for
iteration procedure

where θ is the angle made by the first crank and the axis of backbone while β is
the coupler angle measured relative to the fixed link. Plotting the values of θ and
β, we can see from Fig. 5 that a minimum exists for β− θ curve for a given set of
length parameters.

Differentiating the above equation with respect to θ and setting
dβ

dθ
= 0 and

simplifying, we get
cos (θ − β) = cos θ

From the above equation, we can get the value of crank angle (and subsequently
a configuration of the linkage) where the rate of change of coupler angle with
respect to the crank angle is zero. This is given by

β = 2 (θ − kπ) (2)

where k is an integer.

In the initial un-actuated configuration, the lengths of link are l0 = l2 =
L0

n
.

In this position, the initial coupler angle is zero. After actuation, the nearest
minimum for the coupler angle (from zero value) appears when k = 0, or β = 2θ
for small displacements of the first crank. In what follows, it is shown that the
configuration which produces minimum change of coupler angle is the same as the
configuration obtained analytically by Gravagne and Walker [7].

Substituting θ =
β

2
in Eq. (1) and simplifying, we get

−l2 +

(
l0 − 2a sin

(
β

2

))2

= 0 (3)

Since l takes only positive values, we get

sin
β

2
=
l0 − l

2a
(4)
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The assembled discrete segments represent the robotic continuum for large values
of n. In that case, the right-hand side of the above equation will be very small.
For small angles, we get

β =
l0 − l
a

(5)

The value of coupler angle for the distal tip, which is same as the angle β(L0) in
the derivation shown in [7], can be found by multiplying the above expression for
β with the total number of segments n. The value of coupler angle so obtained,

β(L0) = n
l0 − l
a

=
∆La

a
(6)

is same as the value obtained analytically in [7].
Since it has been shown that the forward kinematics of continuum robot can be

obtained by minimizing the coupler angle of approximated 4 bar parallel linkages,
the following formulation may be used to implement the optimization procedure:

Let the co-ordinates of the ends of the coupler attached to the first crank
and the second crank in the undeformed position be denoted by Xi+1

0 and Xi+1
a ,

respectively. The corresponding deformed positions are denoted by xi+1
0 and xi+1

a ,
respectively. Similarly, the co-ordinates of the ends of the fixed link attached to
the first crank and the second crank are Xi

0 and Xi
a, respectively. For the segment

at the base of robot i = 1 and i = n at the tip. With the above, the optimization
problem may be formulated as:

arg min
xi+1
b ,xi+1

a

arccos

((
Xi

0 −Xi
a

‖Xi
0 −Xi

a‖

)
·
(

xi+1
0 − xi+1

a

‖xi+1
0 − xi+1

a ‖

))
Subject to:

‖xi+1
0 −Xi

0‖ = l0

‖xi+1
a −Xi

a‖ = l

‖xi+1
0 − xi+1

a ‖ = a (7)

Given data: Xi
0,X

i+1
0 ,Xi

a,X
i+1
a , l0, l, a

The solution to the above optimization problem gives the co-ordinates of tips
xi+1
0 and xi+1

a and the iterative method starts from the base segment and proceeds
towards the tip of the robot. With reference to Eq. (4), in order to ensure that
the right-hand side of the equation is always less than 1, the value of n may be
chosen such that

n >
L0 − La

2a
(8)

Fig. 7 shows the profile plotted for a continuum robot using the solution obtained
from analytical method as well as the discretized optimization method solved
using fmincon in Matlab. The solution, as proved before, is exact except for
the tolerances in the numerical procedure. Fig. 8 shows that the profile remains
similar with different number of segments.

In the next section, we extend the approach to 3D continuum robots.
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Figure 9: Discretization of robot
in 3D
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3 Forward Kinematics Model for Continuum Robot
in 3D

If both pairs of cables are actuated simultaneously, the continuum robot will as-
sume a deformed pose in 3D space. For simultaneous actuation, the discretization
of robot is carried out as shown in Fig.9. Here, the backbone along with the actu-
ating cables which are placed at an angle φ = 90◦ apart can be considered as a set
of two adjoined 4 bar linkages (a 7-bar linkage). The two quadrilaterals have the
vertices

(
Xi

0,X
i+1
0 ,Xi+1

a ,Xi
a

)
and

(
Xi

0,X
i+1
0 ,Xi+1

b ,Xi
b

)
initially. These quanti-

ties change to
(
Xi

0,x
i+1
0 ,xi+1

a ,Xi
a

)
and

(
Xi

0,x
i+1
0 ,xi+1

b ,Xi
b

)
after actuation. The

subscripts a and b are used to denote the respective values for the linkages formed
by cable pairs a and b respectively. The coupler angles may be defined as βa and
βb for the two 4-bar linkages.

Since the deformation of the robot is commutative– i.e., the actuation is the
same irrespective of the order of actuating the cables, the final pose will be the
one where coupler angles of both the linkages are minimized simultaneously and
independently. Hence, the pose can be determined from solving the optimization

6
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problem

arg min
xi+1
b ,xi+1

a

[
arccos

((
Xi

0 −Xi
a

‖Xi
0 −Xi

a‖

)
·
(

xi+1
0 − xi+1

a

‖xi+1
0 − xi+1

a ‖

))]2
+ (9)

[
arccos

((
Xi

0 −Xi
b

‖Xi
0 −Xi

b‖

)
·

(
xi+1
0 − xi+1

b

‖xi+1
0 − xi+1

b ‖

))]2
Subject to:

‖xi+1
0 −Xi

0‖ = l0 (10)

‖xi+1
a −Xi

a‖ = la

‖xi+1
b −Xi

b‖ = lb

‖xi+1
0 − xi+1

a ‖ = a

‖xi+1
0 − xi+1

b ‖ = a

arccos
((

xi
0−x

i
a

‖xi
0−xi

a‖

)
·
(

xi
0−x

i
b

‖xi
0−xi

b‖

))
− arccos

((
Xi

0−X
i
a

‖Xi
0−Xi

a‖

)
·
(

Xi
0−X

i
b

‖Xi
0−Xi

b‖

))
= 0

Given data: Xi
0,X

i+1
0 ,Xi

a,X
i+1
a ,Xi

b,X
i+1
b , l0, la, lb, a

where la =
La

n
, lb =

Lb

n
and the last equality constraint ensures that the separa-

tion between the cables remains constant even after deformation.
In Fig. 11 and Fig. 12, the pose of robot with two cables actuated by equal

amounts as well as by different values are shown. As is the case with the 2D,
analytical solution and optimization based solution varies only by the numerical
error induced due to the optimization scheme.

To summarize, we have shown that the forward kinematics of a cable-driven
continuum robot, with a fixed tendon spacing can be calculated using an opti-
mization based approach. The actuating cable of the continuum robot as well
as the backbone are discretized to a number of segments and the two are con-
sidered as the two cranks of a 4-bar linkage. The constant spacing between the
cable and the backbone separates the cranks and form the fixed link as well as
the coupler. Minimizing the coupler angle from the stationary initial position
based on the constraints imposed by the cable lengths, backbone length as well as
the constant spacing between the cable and backbone, a unique pose is obtained
for the robot. This unique pose is shown to match the solution obtained using
differential geometric approach [7].

It is worth noting that the approach is applicable only if the given lengths
are constant. For a robot which does not have guiding disks to keep a constant
cable spacing, a will vary and this approach cannot be used in the present form.
For the case where the cables are passed through guiding disks with holes drilled
with different spacings, the cables will not drift in circumferential direction. In
reference [8], forward kinematics of such a system with general tendon routing
is posed using a set of differential equations based on Cosserat theory. However,
the expressions are non-intuitive and are applicable to tendon routes that can be
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Figure 11: Profile of robot with cables actuated by equal displacements. (Black
lines for analytical solution and blue lines for optimization based solution)
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analytically expressed. In our optimization based method proposed in this paper,
the same would translate to adding specific constraints to the problem, such as:

‖xi+1
0 − xi+1

a ‖j = aj (11)

‖xi+1
0 − xi+1

b ‖j = aj (12){
arccos

((
xi
0 − xi

a

‖xi
0 − xi

a‖

)
·
(

xi
0 − xi

b

‖xi
0 − xi

b‖

))
− (13)

arccos

((
Xi

0 −Xi
a

‖Xi
0 −Xi

a‖

)
·
(

Xi
0 −Xi

b

‖Xi
0 −Xi

b‖

))}
j

=φj (14)

where (·)j represent the specified values at segment index j. The above optimiza-
tion problem can again be solved numerically using fmincon provided by Matlab.

4 Conclusions

The forward kinematics of cable driven continuum robots such as the well-known
Rice/Clemson elephant trunk has been analytically solved by Gravagne and Walker
based on differential geometry. It is shown in this paper that the same can also
be achieved using optimization methods. The continuum robot is discretized into
segments with each segment represented as a 4-bar parallelogram linkage for pla-
nar manipulation. From the initial horizontal position of the coupler, a unique
pose of the 4-bar linkage is obtained by minimizing the angle made by coupler
with the fixed link, while maintaining the constraints of link lengths. When the
iterative process is continued for the entire robot, the resulting pose is shown to
be the same as the one derived using the traditional differential geometric meth-
ods. A minimum number of segments required for the procedure is also suggested
based on the derivation and the method shows consistency with varying number
of segments. The concept is directly extended to 3D using a 7-bar linkage or two
adjoined 4-bar linkages and with an extra constraint to maintain the constant
angle between the cables. The numerical procedure and analytical solution are
shown to match each other as in the 2D case.

The method suggested in this paper suggests a new perspective in modelling
the forward kinematics of cable driven continuum robots. The proposed method
is easy to apply to robots having uneven separation between the cables and also
for robots with generalized cable routing— for which analytical methods could be
a daunting task. Research work exploring these areas is ongoing.
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